Nonlinear Regression

Lecture 51 Section 7.4

Robb T. Koether

Hampden-Sydney College

Mon, May 1, 2017

Objectives

Objectives

- Derive other least-squares equations.
- Apply the models to the DJIA.

Quadratic Regression

Quadratic regression requires finding a quadratic function

$$y = ax^2 + bx + c$$

that minimizes the sum of the squared deviations

$$\sum_{i=1}^{n} ((a + bx_i + cx_i^2) - y_i)^2.$$

The method is the same, but the results are far more complicated.

Quadratic Regression

• The equations to be solved for a, b, and c are

$$na + b \sum x + c \sum x^{2} = \sum y,$$

$$a \sum x + b \sum x^{2} + c \sum x^{3} = \sum xy,$$

$$a \sum x^{2} + b \sum x^{3} + c \sum x^{4} = \sum x^{2}y.$$

Quadratic Regression

$$a = \frac{(\sum x^2)^2 \sum x^2 y - \sum x \sum x^2 y \sum x^3 + \sum x \sum x^4 \sum xy + (\sum x^2)^2 \sum xy - \sum x^2 \sum x^3 \sum x^2 y + \sum x \sum x^4 \sum y}{(\sum x^2)^3 - 2 \sum x \sum x^2 \sum x^3 + n(\sum x^3)^2 + (\sum x)^2 \sum x^4 - n \sum x^2 \sum x^4},$$

$$b = \frac{n \sum x^2 y \sum x^3 - \sum x \sum x^2 \sum x^2 y + (\sum x^2)^2 \sum xy + \sum x \sum x^4 \sum y - n \sum x^4 \sum xy - \sum x^2 \sum x^3 \sum y}{(\sum x^2)^3 - 2 \sum x \sum x^2 \sum x^3 + n(\sum x^3)^2 + (\sum x)^2 \sum x^4 - n \sum x^2 \sum x^4},$$

$$c = \frac{(\sum x)^2 \sum x^2 y - n \sum x^2 \sum x^2 y - \sum x \sum x^2 \sum xy + n \sum x^3 \sum xy + (\sum x^2)^2 \sum y - \sum x \sum x^3 \sum y}{(\sum x^2)^3 - 2 \sum x \sum x^2 \sum x^3 + n(\sum x^3)^2 + (\sum x)^2 \sum x^4 - n \sum x^2 \sum x^4}.$$

Example

Find the least-squares regression quadratic function for the data

Example

Find the least-squares regression quadratic function for the data

$$y = 0.0302x^2 - 0.9709x + 8.2387$$

Logarithmic Regression

Logarithmic regression requires finding a logarithmic function

$$y = a + b \ln x$$

that minimizes the sum of the squared deviations

$$\sum_{i=1}^{n} ((a + b \ln x_i) - y_i)^2.$$

Logarithmic Regression

Logarithmic regression requires finding a logarithmic function

$$y = a + b \ln x$$

that minimizes the sum of the squared deviations

$$\sum_{i=1}^{n} ((a + b \ln x_i) - y_i)^2.$$

This is the same as linear regression with x replaced by $\ln x$.

Logarithmic Regression

The equations to be solved are

$$na + b \sum \ln x_i = \sum y_i,$$

$$a \sum \ln x_i + b \sum (\ln x_i)^2 = \sum (\ln x_i)y_i.$$

Example

Find the least-squares regression logarithmic function for the data

Example

Find the least-squares regression logarithmic function for the data

$$y = 0.797 + 2.927 \ln x$$

Power Regression

Power regression requires finding a logarithmic function

$$y = ax^b$$

that minimizes the sum of the squared deviations

$$\sum_{i=1}^n (ax_i^b - y_i)^2.$$

Power Regression

The trick is to apply logarithms and convert the equation into

$$\ln y = \ln a + b \ln x$$

and use logarithmic regression.

Power Regression

The trick is to apply logarithms and convert the equation into

$$\ln y = \ln a + b \ln x$$

and use logarithmic regression. Again, this is linear regression

$$Y = A + bX$$

with y replaced by $\ln y$, y replaced by $\ln y$, and a replaced by $\ln a$.

Power Regression

The trick is to apply logarithms and convert the equation into

$$\ln y = \ln a + b \ln x$$

and use logarithmic regression. Again, this is linear regression

$$Y = A + bX$$

with y replaced by $\ln y$, y replaced by $\ln y$, and a replaced by $\ln a$. The solution gives A for $\ln a$, so $a = e^A$.

Example

Find the least-squares regression power function for the data

Example

Find the least-squares regression power function for the data

$$y = 1.1036x^{1.0665}$$

Exponential Regression

Exponential regression requires finding a logarithmic function

$$y = ab^{x}$$

that minimizes the sum of the squared deviations

$$\sum_{i=1}^n (ab^{x_i} - y_i)^2.$$

Exponential Regression

The trick is again to apply logarithms and convert the equation into

$$\ln y = \ln a + x \ln b$$

and use logarithmic regression.

Exponential Regression

The trick is again to apply logarithms and convert the equation into

$$\ln y = \ln a + x \ln b$$

and use logarithmic regression.

Once again, this is linear regression

$$Y = A + Bx$$

with x replaced by $\ln x$, a replaced by $\ln a$, and b replaced by $\ln b$.

Exponential Regression

The trick is again to apply logarithms and convert the equation into

$$\ln y = \ln a + x \ln b$$

and use logarithmic regression.

Once again, this is linear regression

$$Y = A + Bx$$

with x replaced by $\ln x$, a replaced by $\ln a$, and b replaced by $\ln b$. The solution gives A for $\ln a$ and B for $\ln b$, so $a = e^A$ and $b = e^B$.

Example

Find the least-squares regression exponential function for the data

Example

Find the least-squares regression exponential function for the data

$$y = 0.897(1.506^x)$$

DJIA and Exponential Growth

The year-end averages

DJIA and Exponential Growth

Linear model: y = 983.7 + 534.87x

DJIA and Exponential Growth

Quadratic model: $y = 1.35x^2 + 493.0x + 1206.9$

DJIA and Exponential Growth

Linear model vs. quadratic model

DJIA and Exponential Growth

Logarithmic model: $y = -3395.8 + 5091.2 \ln x$

DJIA and Exponential Growth

Power model: $y = 1178.1x^{0.7543}$

DJIA and Exponential Growth

Exponential model: $y = 2734.3(1.074^{x})$